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ABSTRACT
The quest to identify local dense communities closely connected

to predetermined seed nodes is vital across numerous applications.

Given the seed nodes 𝑅, the R-subgraph density of a subgraph 𝑆 is

defined as traditional graph density of 𝑆 with penalties on the nodes

in 𝑆 \ 𝑅. The state-of-the-art (SOTA) anchored densest subgraph

model, which is based on R-subgraph density, is designed to address

the community search problem. However, it often struggles to effi-

ciently uncover truly dense communities. To eliminate this issue,

we propose a novel NR-subgraph density metric, a nuancedmeasure

that identifies communities intimately linked to seed nodes and also

exhibiting overall high graph density. We redefine the anchored

densest subgraph search problem through the lens of NR-subgraph

density and cast it as a Linear Programming (LP) problem. This al-

lows us to transition into a dual problem, tapping into the efficiency

and effectiveness of convex programming-based iterative algorithm.

To solve this redefined problem, we propose two algorithms: FDP,
an iterative method that swiftly attains near-optimal solutions, and

FDPE, an exact approach that ensures full convergence. We perform

extensive experiments on 12 real-world networks. The results show

that our proposed algorithms not only outperform the SOTA meth-

ods by 3.6~14.1 times in terms of running time, but also produce

subgraphs with superior internal quality.
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1 INTRODUCTION
The global community search problem is a fundamental network

analysis task, which aims at uncovering all communities with

strong internal cohesiveness [10, 18, 32, 38, 41]. A notable vari-

ant of this problem is the local community search, which focuses

on discovering a specific community that is highly correlated with
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Figure 1: Our motivation: The red nodes are the seed nodes 𝑅.
The traditional R-subgraph density metric makes it hard for
the subgraphs (in green boxes) to contain nodes with large
degrees even though these nodes are very much related to 𝑅.
The proposed metric NR-subgraph density has no this limita-
tion, and can identify the more reasonable and interpretive
community around 𝑅 (in blue boxes).

the user-initiated seed nodes. The significance of the local com-

munity search is underscored by its diverse practical applications,

such as recommender systems [22, 50], detecting spammers [47],

inferring user attributes [35], and identifying protein complexes

[40]. Therefore, the body of research dedicated to the local commu-

nity search spans over a decade and encompasses numerous studies

[3, 8, 15, 16, 19, 26, 29, 39, 42, 44–46, 49].

Global community search is concerned with optimizing certain

global properties to ensure high-quality target communities. For

instance, the densest subgraph search is a representative model

within this domain. Given a graph 𝐺 (𝑉 , 𝐸), a subgraph 𝑆 is con-

sidered the densest when it exhibits the maximum graph density

(𝜌 (𝑆) = |𝐸 (𝑆 ) ||𝑆 | ), signifying an exceptionally interconnected com-

munity. In contrast to the global community search problem, local

community search problems incorporate the principle of locality,
which evaluates the degree of overlap with the predetermined seed

nodes. To illustrate, we assume that 𝑅 is the seed set, the local con-
ductance [39, 46] of a community 𝑆 is assessed based on the overlap

score between 𝑆 and 𝑅 [46]. The state-of-the-art (SOTA) model is

the Anchored Densest Subgraph [16], which optimizes R-subgraph

density metric (Definition 2.1) and forces the nodes in 𝐴 ⊆ 𝑅 (𝐴

is a given parameter) are included in the result. Unlike traditional

density measures, R-subgraph density imposes a penalty on nodes

that fall outside 𝑅, reinforcing the significance of the seed nodes in

determining the community structure.
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Although R-subgraph density accounts for the relationship be-

tween the identified local community and the seed set, it often

suffers from the dilemma that the identified communities do not

retain favorable global properties well. For instance, as illustrated

in Figure 1(b) with 𝑅 = {𝑢1, 𝑢2, 𝑢3}, the subgraph that maximizes

the R-subgraph density is the seed set 𝑅 itself. This situation ex-

emplifies a limitation that the subgraph identified with the largest

R-subgraph density may fail to be a cohesive community (i.e., poor

graph density). The reason why R-subgraph density has this short-

coming is that each node 𝑢 in 𝑆 \ 𝑅 has a penalty of the degree of 𝑢.

Thus, the nodes with large degrees are not expected to be included

in the subgraph with large R-subgraph density. The absence of large

degrees nodes makes the subgraphs with large R-subgraph den-

sity sparse. In Figure 1 (a) and Figure 1(b), the subgraphs with the

maximum largest R-subgraph density fail to identify {𝑢0, 𝑢1, ..., 𝑢5}
because the nodes out of 𝑅 have large degrees. To address the limi-

tations of existing local density metrics such as R-subgraph density,

we propose an innovative metric named NR-subgraph density (Sec-

tion 3.1). In NR-subgraph density, the penalty of each node 𝑢 in

𝑆 \ 𝑅 is the number of neighbors in the community 𝑆 instead of

the whole graph like R-subgraph density. Thus, for a community

𝑆 with high NR-subgraph density, the nodes are naturally related

to 𝑅. Further, NR-subgraph density is a closer lower bound to the

traditional density when compared to R-subgraph density (Theo-

rem 3.3), making subgraphs that achieve high NR-subgraph density

demonstrate high traditional density. As a consequence, this cor-

relation confirms that NR-subgraph density is valid in identifying

densely connected communities.

While NR-subgraph density offers a compelling advantage in

community search, the search for the subgraph with the maximum

NR-subgraph density and anchored nodes 𝐴 raises significant chal-

lenges. Firstly, incorporating the requirement that certain nodes

𝐴 ⊆ 𝑅 must be included in the resulting subgraph introduces a

layer of complexity not encountered in traditional global optimiza-

tion problems. This requirement complicates the problem formu-

lation as one that is amenable to convex optimization approaches.

Secondly, the well-known Frank-Wolfe algorithm [28], which is

adept at solving the densest subgraph problem in a global context,

does not readily translate to the local domain where NR-subgraph

density operates. To overcome these challenges, in this paper, we

formulated the anchored densest subgraph search problem based

on NR-subgraph density as a convex programming problem. In

particular, this transformation allows us to leverage the powerful

Frank-Wolfe optimization method, ultimately leading to the devel-

opment of the FDP algorithm (Algorithm 5.2). Impressively, FDP
can reach a nearly optimal solution within just a few iterations.

On top of that, we introduce an exact algorithm FDPE (Algorithm

2), which continues to run FDP until convergence is achieved. We

develop a maximum-flow algorithm to verify whether FDP has

converged to the optimum. FDPE necessitates the execution of

the maximum-flow algorithm a small number of times. Both FDP
and FDPE exhibit local time and space complexity, rendering them

highly scalable and exceedingly efficient for processing large-scale

datasets. We highlight our main contributions as follows:

One novel NR-subgraph density metric. We present a new NR-

subgraph density metric, a significant advancement that refines

the community search problem by incorporating the concept of

locality while still capturing essential global cohesive properties

within network structures. This metric adds a nuanced perspective

to the identification of communities in relation to a set of seed

nodes, offering a more targeted approach to community detection.

Two Efficient algorithms. We formulate the anchored densest

subgraph problem based on NR-subgraph density as a Linear Pro-

gramming (LP) problem. This formulation leads to the transforma-

tion of the LP problem into its dual form, allowing us to develop

two novel and efficient algorithms: the Frank-Wolfe based FDP
algorithm, which iterates to near-optimal solutions, and FDPE, an
exact algorithm that operates until true convergence is achieved.

This contribution is crucial as it presents a methodology that over-

comes the computational limitations encountered in prior models

and offers a more efficient optimization framework.

Extensive experiments. To validate the effectiveness and ef-

ficiency of our proposed metrics and algorithms, we have con-

ducted extensive experiments on 12 real-world networks. The re-

sults demonstrate that: (1) FDP outperforms the SOTA methods by

at least one order of magnitude, and (2) FDPE can also be several

times faster than the SOTA methods. Furthermore, the subgraphs

identified with the largest NR-subgraph density exhibit high qual-

ity, reinforcing the effectiveness of our novel NR-subgraph density

metric. These experimental results decisively demonstrate that

FDP and FDPE are not only efficient but also effective. For repro-

ducibility purpose, the source code of our work is available at

https://github.com/LightWant/nrdensity.

2 PRELIMINARIES
We consider an unweighted and undirected graph 𝐺 (𝑉 , 𝐸), where
𝑉 is the set of nodes and 𝐸 is the set of edges. The graph comprises

𝑛 = |𝑉 | nodes and𝑚 = |𝐸 | edges. Each edge 𝑒 (𝑢, 𝑣) is a connection
between 𝑢 and 𝑣 . The neighbors of 𝑢 in graph 𝐺 (𝑉 , 𝐸) is 𝑁 (𝑢,𝑉 ).
Given a node set 𝑆 , we denote 𝐺 (𝑆, 𝐸 (𝑆)) as the induced subgraph

of 𝑆 , where 𝐸 (𝑆) = {𝑒 (𝑢, 𝑣) |𝑒 ∈ 𝐸,𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆}. We abuse 𝑆

to represent 𝐺 (𝑆, 𝐸 (𝑆)) if the context is clear. The density of a

subgraph 𝑆 is defined as 𝜌 (𝑆) = |𝐸 (𝑆 ) ||𝑆 | . Below, we introduce the

definition of R-subgraph density [16], which was used for detecting

the anchored densest subgraph.

Definition 2.1 (R-subgraph density [16]). Given a graph 𝐺 (𝑉 , 𝐸)
and a set of nodes 𝑅 ⊆ 𝑉 , the R-subgraph density of a node set

𝑆 ⊆ 𝑉 is

𝜌𝑅 (𝑆) =
2|𝐸 (𝑆) | −∑

𝑢∈𝑆\𝑅 |𝑁 (𝑢,𝑉 ) |
|𝑆 | . (1)

R-subgraph density incorporates the seed set 𝑅 to evaluate the lo-

calized density of a subgraph.With the penalty item

∑
𝑢∈𝑆\𝑅 |𝑁 (𝑢,𝑉 ) |,

the nodes with large |𝑁 (𝑢,𝑉 ) | tends not to be included in the sub-

graphs with large R-subgraph density. For example, as shown in

Figure 1(a), the subgraph with the maximum R-subgraph density is

simply 𝑆 = {𝑢3}, yielding a R-subgraph density value of 𝜌𝑅 (𝑆) = 0.

The subgraphs that include nodes with a larger number of neigh-

bors have a negative R-subgraph density value. For instance, if 𝑆

is expanded to include 𝑢1, 𝑢2, 𝑢3, and 𝑢4, the R-subgraph density

drops to 𝜌𝑅 (𝑆) = 2×5−(3+4+4)
4

= − 1

4
. Figure 1(b) has a similar trend.

Anchored Densest Subgraph Search (ADSS [16]). Given a graph

𝐺 (𝑉 , 𝐸) and two node sets𝐴, 𝑅 with𝐴 ⊆ 𝑅 ⊆ 𝑉 , ADSS is to find the
subgraph 𝑆∗ADSS containing 𝐴, satisfying 𝑆

∗
ADSS has the maximum

R-subgraph density. Formally, we have

𝑆∗ADSS = arg max

𝑆 :𝐴⊆𝑆⊆𝑉
𝜌𝑅 (𝑆) (2)

2
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Frank-Wolfe method. The Frank-Wolfe method is widely used for

constrained primal-dual convergence problems [28]. Several previ-

ous works [11, 33, 34, 43] have employed the Frank-Wolfe method

for the densest subgraph problem, which seeks a subgraph with the

highest density, as denoted by argmax𝑆⊆𝑉 𝜌 (𝑆). This problem is

modeled as a convex optimization problem in these studies, with the

Frank-Wolfe algorithm being utilized to locate the optimal solution.

Algorithms based on the Frank-Wolfe method are both efficient and

effective in identifying the densest subgraph, which are recognized

as the current SOTA methods for the densest subgraph problem.

3 A NEW LOCAL DENSITY METRIC
The subgraph with the maximum R-subgraph density often omits

nodes that have a large number of neighbors, leading to the sub-

graph with the maximum R-subgraph density being a sparse com-

munity. Further, the ADSS problem is very hard to model as a con-

vex programming problem due to the penalty item of R-subgraph

density and anchored nodes, resulting in the efficient Frank-Wolfe

method not being applied. To overcome these issues, we propose a

new local density metric, called NR-subgraph density in Definition

3.1. The newmetric does not repel high-degree nodes and the ADSS
problem based on the NR-subgraph density is a convex program-

ming problem. Moreover, we show that the subgraph identified

based on the NR-subgraph density is denser than that based on the

R-subgraph density in our empirical results.

Definition 3.1 (NR-subgraph density). Given a graph𝐺 (𝑉 , 𝐸 ) and a

node set 𝑅 ⊆ 𝑉 , the NR-subgraph density of a node set 𝑆 ⊆ 𝑉 is

𝜌+𝑅 (𝑆 ) =
2 |𝐸 (𝑆 ) | − ∑

𝑢∈𝑆\𝑅 |𝑁 (𝑢, 𝑆 ) |
|𝑆 | (3)

Compared to R-subgraph density, NR-subgraph density modifies

the neighborhood function by shifting from 𝑁 (𝑢,𝑉 ) to 𝑁 (𝑢, 𝑆),
placing a stronger emphasis on the internal structure of the sub-

graph, thus enhancing the measure of density.

Example 3.2. In Figure 1, based on the new NR-subgraph density

metric, we can identify the subgraph 𝑆∗ = {𝑢0, 𝑢1, ..., 𝑢5} as having
the maximum NR-subgraph density for both seed sets 𝑅 = {𝑢3}
and 𝑅 = {𝑢1, 𝑢2, 𝑢3}. Specifically, in Figure 1(a), the NR-subgraph

density value for 𝑆∗ when 𝑅 = {𝑢3} is calculated as 𝜌+
𝑅
(𝑆∗) =

2×12−(4+3+4+4+4)
6

= 5

6
. Similarly, in Figure 1(b), when𝑅 = {𝑢1, 𝑢2, 𝑢3},

the NR-subgraph density for 𝑆∗ is 𝜌+
𝑅
(𝑆∗) = 2×12−(4+4+4)

6
= 2. In

Figure 1(a), the community with the highest R-subgraph density

has a conductance of 5, whereas that of NR-subgraph density is

1. It is similar in Figure 1(b). These examples clearly illustrate the

superiority of our new metric.

Anchored Densest Subgraph Search based on NR-subgraph
density (ADSS+). Given a graph 𝐺 (𝑉 , 𝐸) and two node sets 𝐴

and 𝑅 with 𝐴 ⊆ 𝑅 ⊆ 𝑉 , ADSS+ is to find the subgraph 𝑆∗ADSS+
containing 𝐴, satisfying 𝑆∗ADSS+ has the maximum NR-subgraph

density. Formally, we have

𝑆∗ADSS+ = arg max

𝑆 :𝐴⊆𝑆⊆𝑉
𝜌+𝑅 (𝑆). (4)

For any given subgraph 𝑆 , we can easily derive that 2𝜌 (𝑆) ≥
𝜌+
𝑅
(𝑆) ≥ 𝜌𝑅 (𝑆), as detailed in Theorem 3.3. This indicates that

NR-subgraph density serves as a more precise lower bound of the

graph density in comparison to R-subgraph density, tightening the

correlation between the local and overall density metrics. Due to the

space limits, all the missing proofs can be found in the Appendix.

Theorem 3.3. For any subgraph 𝑆 , 2𝜌 (𝑆) ≥ 𝜌+
𝑅
(𝑆) ≥ 𝜌𝑅 (𝑆) holds.

Remark. It is worth remarking that if there are nodes in the set

difference 𝑆 \𝑅 that are connected to nodes in𝑉 \𝑆 , we can deduce

that 𝜌+
𝑅
(𝑆) > 𝜌𝑅 (𝑆). This is because there will be at least one

node satisfying |𝑁 (𝑢, 𝑆) | < |𝑁 (𝑢,𝑉 ) |. Clearly, such a condition is

easy to meet in practice, making our metric is strictly better than

the NR-subgraph density. Empirical results from our experiments

demonstrate that 𝜌 (𝑆∗ADSS+) is significantly larger than 𝜌 (𝑆∗ADSS).

4 AN LP FORMULATION
In this section, we show that the ADSS+ can be formulated as a

linear program problem, denoted by LP. The optimal solution of LP
can be directly correlated with the optimal subgraph 𝑆∗. Specifically,
we establish the following LP for the ADSS+ problem based on the

NR-subgraph density metric.

[LP] max

∑︁
𝑒∈𝐸

𝑤𝑒𝑥𝑒 𝑠.𝑡 .

𝐶0 : 𝑤𝑒 =
∑︁
𝑢∈𝑒

1[𝑢 ∈ 𝑅 ] ∀𝑒 ∈ 𝐸

𝐶1 : 𝑥𝑒 = min

𝑢∈𝑒
𝑦𝑢 , ∀𝑒 ∈ 𝐸

𝐶2 :

∑︁
𝑢∈𝑉

𝑦𝑢 = 1

𝐶3 : 𝑦𝑢 = max

𝑣∈𝑉
𝑦𝑣 ∀𝑢 ∈ 𝐴

𝐶4 : 𝑥𝑒 ≥ 0, 𝑦𝑢 ≥ 0 ∀𝑒 ∈ 𝐸, ∀𝑢 ∈ 𝑉

(5)

Below, we explain the relationship between LP and ADSS+.
Lemma 4.1. Given a subgraph 𝑆 , we have 𝜌+

𝑅
(𝑆)·|𝑆 | = ∑

𝑒∈𝐸 (𝑆 ) 𝑤𝑒 ,
where𝑤𝑒 is defined in 𝐶0 of LP.

Lemma 4.1 gives the meaning of 𝑤𝑒 in LP. 𝑤𝑒 is the weight

of edge 𝑒 in the definition of NR-subgraph density. NR-subgraph

density is the total weight of edges divided by the number of nodes,

which is a classic form of weighted density.

Lemma 4.2. Let 𝑦 be a feasible solution of LP. Let 𝑥 be the vector
produced by 𝑦, i.e. 𝑥𝑒 = min𝑢∈𝑒 𝑦𝑢 (𝐶1 of LP). If 𝑆 = {𝑢 |𝑦𝑢 > 0}, we
have 𝐸 (𝑆) = {𝑒 |𝑥𝑒 > 0}.

Lemma 4.2 establishes that any feasible solution of the linear

program LP corresponds to a subgraph. More precisely, the nodes of

the subgraph are represented by the positive entries in the solution

vector 𝑦. This correlation also elucidates the purpose of constraint

𝐶3 within LP. 𝐶3 forces the nodes in the set of anchored nodes 𝐴

having positive entries, ensuring that 𝐴 is included in 𝑆 .

Lemma 4.3. Given a subgraph 𝑆 that 𝐴 ⊆ 𝑆 , there exists a feasible
solution of LP to make the value of the objective function be 𝜌+

𝑅
(𝑆).

Lemma 4.3 gives a map from a subgraph 𝑆 to a feasible solution

LP. The value of the objective function with respect to (w.r.t.) the

mapped feasible solution is exactly the NR-subgraph density of 𝑆 .

Lemma 4.4. Given a feasible solution 𝑦 with the objective function
value 𝑣𝑦 , there exists at least a subgraph 𝑆 ⊆ 𝑉 such that 𝜌+

𝑅
(𝑆) ≥ 𝑣𝑦 .

Leveraging Lemma 4.3 and Lemma 4.4, we can establish that

there exists a one-to-one correspondence (i.e., bijection) between

the optimal solution of the linear program LP and the optimal

subgraph 𝑆∗, as shown in Theorem 4.5. This bijection ensures that

each optimal solution to LP uniquely maps to an optimal subgraph

𝑆∗, and vice versa.

3
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Theorem 4.5. Assuming that 𝑦∗ is the optimal solution of LP, we
can derive that 𝑦∗ ⇔ 𝑆∗ADSS+.

Designing an efficient algorithm to solve LP directly is not straight-
forward. To circumvent this challenge, we have developed a Frank-

Wolfe based approach to converge on the optimal solution𝑦∗. This is
achieved by applying the Frank-Wolfe method to the dual problem

of LP, allowing us to compute the solution indirectly but efficiently.

5 THE FRANK-WOLFE BASED ALGORITHM
In this section, we propose a Frank-Wolfe based approximation

algorithm FDP. FDP is tailored to find an approximate solution of

LP from the dual perspective. A key advantage of FDP is that its

time and space complexity are linear w.r.t. the size of the subgraph

𝑅′ which is such that each node in 𝑅′ has at least one neighbor in
𝑅. On top of that, we also develop an exact algorithm to solve the

ADSS+ problem by integrating FDP with a novel maximum-flow

based technique, named FDPE. The time and space complexity of

FDPE is also local to the size of 𝑅′.

5.1 DP: The Dual of LP
Here, we derive the dual of LP that was previously formulated in

Equation 5.

Theorem 5.1. Let LP be the linear program in Equation 5, the
dual of LP is formalized as follows.

[DP] min ∥𝑟 + 𝛽 ∥ 𝑠.𝑡 .

𝐷0 : 𝑟𝑢 =
∑︁

𝑒 :𝑢∈𝑒
𝛼𝑒
𝑢 ∀𝑢 ∈ 𝑉

𝐷1 : 𝛼𝑒
𝑢 ≥ 0 ∀𝑢 ∈ 𝑒 ∈ 𝐸

𝐷2 :

∑︁
𝑢∈𝑒

𝛼𝑒
𝑢 = 𝑤𝑒 ∀𝑒 ∈ 𝐸

𝐷3 : 𝛽𝑢 = 0 ∀𝑢 ∉ 𝐴

𝐷4 : 𝑟𝑢 + 𝛽𝑢 = max

𝑢∈𝑉
(𝑟𝑢 + 𝛽𝑢 ) ∀𝑢 ∈ 𝐴

(6)

Below, we provide some properties of DP. Let 𝛼∗ and 𝛽∗ be the
optimal solution of DP. Let 𝑟∗ be the vector computed from 𝛼∗

according to 𝐷0 of DP. Let 𝑆∗ represent 𝑆∗ADSS+ for short.

Lemma 5.2. For each 𝑢 ∉ 𝐴, we have 𝛽∗𝑢 = 0.

Lemma 5.2 is easy to prove by 𝐷3. Thus, the nodes in 𝑆∗ \𝐴 are

all zeros in 𝛽∗.

Theorem 5.3. Let 𝑟 be a feasible solution of DP, we can derive
that max𝑢∈𝑉 𝑟𝑢 is the upper bound of 𝜌+

𝑅
(𝑆∗).

Theorem 5.3 can help to bound the error of the proposed FDP
algorithm, which will be explained in Section 5.2.

Theorem 5.4. The optimal solution of DP maps to 𝑆∗.

Combining Theorem 5.3 and 5.4, we obtain a clear understanding

of 𝑟∗ + 𝛽∗. (1) The nodes in the anchored set 𝐴 have the maximum

value in 𝑟∗ + 𝛽∗ (according to 𝐷4 and the proof of Theorem 5.4

in appendix). (2) For the nodes in 𝑆∗ \ 𝐴, they also achieve the

maximum value in 𝑟∗ + 𝛽∗, with 𝛽∗𝑢 = 0. (3) Nodes that are not part

of the optimal subgraph 𝑆∗ have a smaller value in 𝑟∗ + 𝛽∗.
Compared to LP, DP approaches the ADSS+ problem from a

different mathematical angle. In DP, 𝛼𝑒𝑢 represents the allocation

of weight 𝑤𝑒 to node 𝑢. 𝛽𝑢 serves as an adjustment to ensure in-

clusion of nodes from the anchored set 𝐴 in the solution. 𝛽 can

be understood as a mechanism that adjusts the “attractiveness” or

“penalty” for the anchored nodes.

Algorithm 1: Frank-Wolfe Based Algorithm (FDP)
Input: The graph𝐺 (𝑉 , 𝐸 ) , 𝑅, 𝐴, number of iterrations𝑇

Output: 𝑆∗: the approximation solution of 𝑆∗; 𝜖 : the error bound
such that 𝜌+

𝑅
(𝑆∗ )/𝜌+

𝑅
(𝑆∗ ) ≤ 1 + 𝜖

1 𝑟 (𝑢 ) ← 0, ∀𝑢 ∈ 𝑉 ;

2 𝛽 (𝑢 ) ← 0, ∀𝑢 ∈ 𝑉 ;

3 for 𝑡 ← 1, 2, ...,𝑇 do
4 foreach 𝑒 ∈ 𝐸 with 𝑤𝑒 > 0 do
5 𝑈𝑚𝑖𝑛 ← argmin𝑢∈𝑒 𝑟 (𝑢 ) + 𝛽 (𝑢 ) ;
6 𝑟 (𝑢 ) ← 𝑟 (𝑢 ) + 𝑤𝑒/|𝑈𝑚𝑖𝑛 |, ∀𝑢 ∈ 𝑈𝑚𝑖𝑛 ;

7 𝑣𝑚𝑎𝑥 ← max𝑢∈𝑉 (𝑟 (𝑢 ) + 𝛽 (𝑢 ) ) ;
8 for 𝑢 ∈ 𝐴 do
9 𝛽 (𝑢 ) ← 𝑣𝑚𝑎𝑥 − 𝑟 (𝑢 ) ;

10 Sort𝑉 by 𝑟 (𝑢 ) + 𝛽 (𝑢 ) ;
11 Denote by𝑉𝑖 the previous 𝑖 nodes of𝑉 ;

12 𝑆∗ = argmax𝑉𝑖 𝜌
+
𝑅
(𝑉𝑖 ) ; /*implemented in linear time.*/

13 𝜖 =
max𝑢∈𝑉 𝑟 (𝑢)/𝑇

𝜌+
𝑅
( ˆ𝑆∗ )

− 1;

14 return 𝑆∗, 𝜖 ;

5.2 FDP: Frank-Wolfe Based Algorithm
The key idea of our algorithm lies in the fact that minimizing the

normmin ∥𝑟+𝛽 ∥ is equivalent to minimizing the square of the norm

min ∥𝑟 + 𝛽 ∥2 = ∑
𝑢 (𝑟𝑢 + 𝛽𝑢 )2. It is a well-understood principle that

the more evenly distributed the values of 𝑟 + 𝛽 are, the smaller

the sum of their squares will be. Therefore, our goal is to evenly

distribute theweight of edges among the nodes (by computing𝛼 and

𝑟 ) while adjust the weight for the anchored set 𝐴 (by computing 𝛽).

We strive to balance the total assigned weight across all nodes (𝑟𝑢 +
𝛽𝑢 ) as evenly as possible. This evenly distributed weight assignment

leads to the desired minimization of min ∥𝑟 + 𝛽 ∥2.
With the above observations, we design Algorithm 1 to show

how Frank-Wolfe based algorithm FDPworks. Algorithm 1 inputs a

graph𝐺 (𝑉 , 𝐸), an integer𝑇 , and outputs an (1+𝜖)-approximation of

the subgraph with the maximumNR-subgraph density. Algorithm 1

maintains two vectors 𝑟 and 𝛽 (line 1 and line 2). Notably, the

algorithm opts for vector 𝑟 in place of 𝛼 . To make the distribution

of 𝑟 +𝛽 as even as possible, Algorithm 1 tries to assign the weight to

the nodes with the smallest value of 𝑟𝑢 + 𝛽𝑢 . According to 𝐷2 of DP,
the weight of edge 𝑒 can only be assigned to the nodes in 𝑒 . As a

result, the weight of each edge 𝑒 is averagely assigned to the nodes

in 𝑒 with the smallest 𝑟 (𝑢) +𝛽 (𝑢) (lines 4-6). To make sure the nodes

in𝐴 are contained in the result, update them to the maximum value.

It is also an implementation of 𝐷4 of DP (lines 7-9). Then, the nodes

with the larger weight are ranked higher (line 10). The nodes with

larger rank has larger priority to be in the result (line 12). Note that

𝜌+
𝑅
(𝑉𝑖 ) can be computed in constant time from 𝜌+

𝑅
(𝑉𝑖−1), thus the

time complexity of line 12 is linear. At last, the largest entry of 𝑟/𝑇
is treated as an upper bound of 𝜌+

𝑅
(𝑆∗), which we will also describe

in Lemma 5.6 (line 13). Next, we give the technical analysis of FDP.

Correctness. We analyzed the correctness of FDP as follows.

Lemma 5.5.
ˆ𝑆∗ is the node set returned by Algorithm 1, 𝐴 ⊆ ˆ𝑆∗.

Lemma 5.6. 𝜖 is the decimal returned by Algorithm 1, we have
that 𝜖 is a correct error bound.

Lemma 5.7. Algorithm 1 is an implementation of the Frank-Wolfe
method for DP.
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Theorem 5.8. Algorithm 1 is a correct solver of DP.

Proof sketch: By Lemmas 5.5, 5.6 and 5.7, we can prove the theorem.

Local complexity. The time and space complexity of Algorithm 1

is local, i.e. it is independent of the whole graph.

Theorem 5.9. Let 𝐸′ be the set of edges with at least one node in
𝑅, and let𝑚′ = |𝐸′ |. Let 𝑛′ be the number of nodes in the subgraph
induced by 𝐸′. The time complexity of Algorithm 1 is 𝑂 (𝑇𝑚′). The
space complexity of Algorithm 1 is 𝑂 (𝑛′ +𝑚′).

Theorem 5.9 shows that the time complexity of the Algorithm 1 is

upon 𝑅. Consequently, Algorithm 1 does not necessitate the loading

of the complete network in implementation, which demonstrates

efficiency in both time and space.

Guarantees on convergence in sub-linear iterations. We ana-

lyze the expected number of iterations to reach a required qualified

solution. The result is that FDP converges fast because the fact that

𝑤𝑒 ≤ 2, by which we can bound the curvature constant (details see

Appendix B, Theorem B.1) of the objective function.

Lemma 5.10. Let 𝑚′ be the count of edges with at lest one side
in 𝑅. The curvature constant of the objective function of DP is
𝐶𝑓 =

∑
𝑒 𝑤𝑒

2 ≤ 4𝑚′.

Theorem 5.11. Let 𝑓 be the objective function of DP. Let 𝛼∗ and
𝛽∗ be the optimal solution. Let 𝑡 be the number of iterations. In FDP,
it has 𝑓 (𝛼 (𝑡 ) , 𝛽 (𝑡 ) ) − 𝑓 (𝛼∗, 𝛽∗) ≤ 𝐶𝑓

𝑡 ≤
4𝑚′
𝑡 .

Theorem 5.11 indicates that FDP has a nice converge rate. Indeed,

as shown in our experiments (Section 6), FDP can achieve a near-

optimal solution in only one iteration.

In practice, the performance of our proposed algorithms depends

on the quality of the seed set, which is a common problem for the

local community search algorithms. The seeds serve as the starting

nodes for the detection and expansion into full communities. The

effectiveness of these algorithms is affected by how well the seed

nodes represent the communities of interest.

5.3 FDPE: FDP Based Exact Algorithm
In this subsection, we propose a FDP based exact algorithm, named

FDPE (Algorithm 2). As shown in Theorem 5.8, FDP can reach the

exact result when𝑇 is sufficiently large. Therefore, FDPE embodies

an iterative process that continues to execute FDP until conver-

gence is attained, yielding an accurate result.

To verify the optimality of the subgraph
ˆ𝑆∗ identified by FDP,

FDPE employs the “stable subset” technique [17] (the details of

the stable subset are stated in Appendix C) along with a newly

proposed technique based on maximum flow. The role of the stable
subset technique is to ensure that the true optimal subgraph 𝑆∗ is
contained within the candidate subgraph

ˆ𝑆∗. Following this contain-
ment check, FDPE applies the maximum-flow based technique to

ascertain whether there is any subgraph 𝑆 ′ strictly contained within
ˆ𝑆∗ that has a higher NR-subgraph density, i.e., 𝜌+

𝑅
(𝑆 ′) > 𝜌+

𝑅
( ˆ𝑆∗). If

no such subgraph 𝑆 ′ exists and ˆ𝑆∗ is confirmed to be a stable subset,

it can be concluded that
ˆ𝑆∗ is exactly 𝑆∗.

Maximum-flow based checker. We design a network whose

minimum cut can judge whether
ˆ𝑆∗ has denser subgraphs. Let 𝐸′

be the set of edges with 𝑤𝑒 > 0 and 𝑒 ⊂ ˆ𝑆∗. Given ˆ𝑆∗, the flow

network has | ˆ𝑆∗ | + 2 nodes including the source node 𝑠 , the sink

Algorithm 2: FDP Based Exact Algorithm (FDPE)
Input: The graph𝐺 (𝑉 , 𝐸 ) , 𝑅, 𝐴, number of iterations𝑇

Output: 𝑆∗: the subgraph with the maximum 𝜌+
𝑅
(𝑆 )

1 𝐸′ ← {𝑒 ∈ 𝐸 |𝑤𝑒 > 0};
2 repeat
3 𝑆∗, 𝜖 ← FDP(𝐺,𝑅,𝐴,𝑇 ) ;
4 until isStableSubset(𝑆∗) and

maxflow(𝑆∗, 𝑅,𝐴, 𝐸′ ) = ∑
𝑢∈ ˆ𝑆∗ |𝑁 (𝑢, 𝑅 ∩ 𝑆∗ ) |;

5 return 𝑆∗;

𝑢3
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s t∞

1

1
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1

1

1

1
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A

Figure 2: An example of the flow network

node 𝑡 and ˆ𝑆∗. Note that 𝐴 ⊆ ˆ𝑆∗ by Lemma 5.5. The edges are built

by the following way.

• From 𝑠 to each 𝑢 ∈ 𝐴, link an edge with infinity capacity.

• From 𝑠 to each 𝑢 ∈ ˆ𝑆∗ \𝐴, link an edge with |𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) |.
• For each edge 𝑒 (𝑢, 𝑣) ∈ 𝐸′, link an edge from 𝑢 to 𝑣 with

capacity 𝑤𝑒 if 𝑣 ∈ 𝑅, and link an edge from 𝑣 to 𝑢 with

capacity𝑤𝑒 if 𝑢 ∈ 𝑅.
• From each 𝑢 ∈ ˆ𝑆∗ to 𝑡 , link an edge with capacity 𝜌+

𝑅
( ˆ𝑆∗).

Theorem 5.12. Let 𝑓 ( ˆ𝑆∗) be the minimum cut of the proposed
network. We can derive that ˆ𝑆∗ has no subgraph with larger NR-
subgraph density if 𝑓 ( ˆ𝑆∗) = ∑

𝑢∈𝑆∗ |𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) |.

Example 5.13. Figure 2 is an example of the flow network for

the graph in Figure 1 when
ˆ𝑆∗ = {𝑢1, 𝑢3, 𝑢5}, 𝑅 = {𝑢1, 𝑢2, 𝑢3} and

𝐴 = {𝑢3}. From 𝑠 to 𝑢3, the edge capacity is infinity since 𝑢3 ∈ 𝐴.
Both𝑢1 and𝑢5 have one neighbor in ˆ𝑆∗∩𝑅, so the capacity of (𝑠,𝑢1)
and (𝑠,𝑢5) is 1. For the edge 𝑒 (𝑢1, 𝑢3) with𝑤𝑒 = 2, link an edge from

𝑢1 to 𝑢3 and an edges from 𝑢3 to 𝑢1 because both 𝑢1 and 𝑢3 are in 𝑅.

Since the NR-subgraph density of
ˆ𝑆∗ is 1, each node link an edge to 𝑡

with capacity 1. We observe that 𝑓 ( ˆ𝑆∗) = ∑
𝑢∈𝑆∗ |𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) | = 3,

and thus there is no denser subgraph in
ˆ𝑆∗.

The maximum-flow is well known to compute the minimum

cut. We utilize the push-and-relabel maximum-flow algorithm in

implementation. When the flow network has 𝑛 nodes, the time

complexity of the push-and-relabel algorithm is 𝑂 (𝑛3). Thus, the
time complexity of themaxflow in line 4 of Algorithm 2 is𝑂 ( | ˆ𝑆∗ |3).
Discussion. In practice, the number of iterations within lines 2-4 of

Algorithm 2 tends to be a small constant. This efficiency stems from

the fact that nodes within the optimal subgraph 𝑆∗ quickly achieve

the highest ranks (as the nodes with the largest ranks are selected to

form
ˆ𝑆∗ in line 12 of FDP). Consequently, FDPE typically requires

only a limited number of executions of themaximumflow algorithm

to reach convergence. The experimental results also show that FDP
converges fast and thus FDPE only requires a small number of call

of maximum flow algorithm.
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Table 1: The statistical information of the datasets

Networks 𝑛 𝑚 Description

WikiV 7,115 100,762 Social network

Epinion 75,879 405,740 Social network

Gowalla 196,591 950,327 Social network

Amazon 403,394 2,443,408 Co-purchase

DBLP 425,957 1,049,866 Collaboration

Berkstan 685,230 6,649,470 Web graph

Youtube 1,157,827 2,987,625 Social network

Pokec 1,632,803 22,301,964 Social network

Skitter 1,696,415 11,095,298 Internet topology

Orkut 3,072,627 117,185,083 Social network

ComLiveJ 4,036,538 34,681,189 Social network

Friendster 65,608,366 1,806,067,135 Social network

6 EXPERIMENTS
We conduct extensive experiments to answer the following Re-

search Questions. RQ1: Can we identify local communities with

higher quality than the start-of-the-art metrics by our proposed

NR-subgraph density (Definition 3.1)? RQ2: How much our pro-

posed FDP (Algorithm 1) and FDPE (Algorithm 2) improve in terms

of running time or quality compared to other existing algorithms?

RQ3:Whether our algorithms are sensitive to the parameters.RQ4:
How fast does FDP converge?

6.1 Experimental Setup
Datasets.We evaluate our solutions on 12 real-world networks (Ta-

ble 1) sourced from the Stanford Network Analysis Project (SNAP)

[31], spanning various domains (e.g., social networks and collabo-

ration networks). Note that the largest dataset Friendster with over

65 million nodes and 1.8 billion edges.

Generations of 𝐴 and 𝑅. To create the seed sets 𝐴 and 𝑅, we em-

ploy the same strategy introduced in prior work [16]. This process

commences by randomly selecting a node 𝑢 from the vertex set 𝑉 .

The set 𝐴 is then constituted by randomly choosing nodes from the

immediate and secondary neighbors of𝑢, typically fixing the size of

𝐴 at 8. The set 𝑅 is constructed through several random walks from

𝐴. The number and length of walks are determined by drawing

random integers within the range of [3, 10]. For each network in

our study, we generate 500 distinct (𝐴, 𝑅) pairs, with the average

cardinality of 𝑅 across all networks being 254. Unless otherwise

stated, the results presented are derived from the mean metrics

computed over these 500 pairs.

Algorithms.We implemented FDP (Algorithm 1) and FDPE (Al-

gorithm 2) in C++. For comparative purposes, we also incorporate

the LA [16] and FS [46] algorithms into our analysis. Each of these

algorithms accepts a graph along with subsets 𝐴 and 𝑅, where

𝐴 ⊆ 𝑅 ⊆ 𝑉 , to output a community inclusive of 𝐴 and confined

to 𝑅. The LA seeks to optimize the R-subgraph density metric,

while FS targets the improvement of local conductance, defined

as
|𝐸 (𝑆,𝑆 ) |∑

𝑢∈𝑅∩𝑆 𝑑 (𝑢 )−𝜖
∑

𝑢∈𝑅∩𝑆 𝑑 (𝑢 )−
∑

𝑢∈𝑅\𝑆 𝑝𝑢𝑑 (𝑢 ) , with 𝑑 (𝑢) represent-
ing the degree of node 𝑢. For consistency with previous studies

[16], we standardize parameters by setting 𝑝𝑢 = 0 and 𝜖 = 1 to

ensure a balanced comparison. Both LA and FS are based on the

maximum flow algorithm. Since LA and FS are originally available

in Julia [16, 46], we reimplemented them in C++ to ensures compar-

ing all algorithms under the same programming language. Our C++

implementations consistently outperform their Julia counterparts.

6.2 Experimental Results
Exp-1: Running Time and Memory Cost. The running time of

LA, FS, FDP, and FDPE across 12 real-world networks is shown

in Figure 3(a). The results indicate that FDP consistently outper-

forms the other algorithms in terms of speed, being on average

14.1×, 85.1×, and 3.9× faster than LA, FS, and FDPE, respectively.
The efficiency of FDP can be attributed to its localized edge scan-

ning around the set 𝑅, circumventing the computationally intensive

maximum-flow algorithm required by LA, FS, and FDPE. While

FDPE is not as rapid as FDP, it still significantly surpasses LA and

FS in speed on 10 of the networks, exhibiting comparable perfor-

mance on the remaining two, WikiV and Amazon. This is credited
to the number of iterations of FDPE is typically low (as per lines

2-4 of Algorithm 2). Overall, these findings highlight the superior

performance of our proposed algorithms in terms of running time.

Figure 3(b) shows the memory consumption of the evaluated

algorithms, measured using the “massif” tool within Valgrind [37].

Our observations indicate that LA and FS exhibit comparable mem-

ory overheads. This similarity can be attributed to their analogous

search strategies, which incrementally expand the search space

from 𝑅 to its neighboring nodes [16, 46]. On the other hand, FDP
demonstrates a marginally lower memory usage compared to FDPE,
the difference that stems from FDPE’s additional requirement to

maintain the weight assignment vector 𝛼 as discussed in Section 5.3.

Notably, both FDP and FDPE realize up to an order of magnitude

reduction in memory consumption when contrasted with LA and

FS. These results confirm the memory efficiency of our algorithms.

Exp-2: Community Quality. The quality analysis of the identified
community is shown in Figure 4. Four distinct effectiveness metrics

are stated as follows.

• Density: Recall that the density of a subgraph 𝑆 is 𝜌 (𝑆) = |𝐸 (𝑆 ) ||𝑆 | .

Figure 4(a) reveals that FDP and FDPE consistently report sub-

graphs with the highest density, averaging 6.1× and 5.4× greater
than those identified by LA and FS, respectively. These results

demonstrate the high effectiveness of our NR-subgraph density

metric.

• Conductance: A subgraph 𝑆 with lower conductance, defined as∑
𝑢∈𝑆 |𝑁 (𝑢,𝑉 \𝑆 ) |

min{∑𝑢∈𝑆 |𝑁 (𝑢,𝑉 ) |,
∑

𝑣∈𝑉 \𝑆 |𝑁 (𝑣,𝑉 ) | }
[32], is indicative of a superior

community. As shown in Figure 4(b), FS has the lowest conduc-

tance, which is in expectation because FS find the subgraph which

optimizes the local conductance [46]. Both FDP and FDPE surpass

LA, with conductance measures that are 23% lower.

• Size: Similar to [16], we also compare the sizes of the communities

identified by different algorithms. The average sizes of the commu-

nities found by the algorithms are depicted in Figure 4(c). Despite

FS identifying some exceptionally large subgraphs, their sparsity

is evident from Figure 4(a). When compared to LA, the subgraphs
discovered by FDP and FDPE are, on average, 2.4× larger. We also

note that all the communities identified by various algorithms are

small compared to the original graph, indicating the locality of all

the compared local community search algorithms.

• Locality to 𝑅: The locality metric,
|𝑆∩𝑅 |
|𝑆∪𝑅 | , assesses how local

a subgraph 𝑆 is to the set 𝑅. In Figure 4(d), both FDP and FDPE
demonstrate 1.6× higher locality compared to LA and a marginal

0.8% improvement over FS. Since FS is designed to optimize the local

conductance, it can outperform our method in terms of conductance.

However, the conductance achieved by FS is only slightly smaller

6
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Figure 3: Running time (ms) and memory cost comparison (MB)
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Figure 5: Sensitivity analysis with varying 𝑇

by 0.063 on average. Our solution’s subgraph density can exceed

FS’s by up to 5 times. These results indicate that our solution can

found much denser subgraphs than FS, with conductance slightly

increased.

In short, these findings validate the rationality and superiority

of the proposed NR-subgraph density metric. Communities with

the high NR-subgraph density values correlate with high-quality

communities, as evidenced by our comprehensive analysis.

Exp-3: Sensitivity Analysis with Varying 𝑇 . The sensitivity

of the running time of FDP is depicted in Figure 5(a). This figure

illustrates results for 6 representative networks, with analogous

patterns observed across the others. Remarkably, FDP exhibits ro-

bust performance against different 𝑇 . The running time increases

only marginally, even as 𝑇 is doubled. This negligible sensitivity

can largely be attributed to the locality of the time complexity of
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Figure 7: Community quality analysis for different |𝑅 | Sizes

FDP that it only scans the edges with one side in 𝑅 (lines 3-9 of

Algorithm 1). Moreover, Figure 5(b) shows the convergence behav-

ior of FDP with varying 𝑇 , where convergence is quantified using

the ratio

𝜌+
𝑅
(𝑆∗ )

𝜌+
𝑅
(𝑆∗ ) . The figure presents results from 6 networks, with

7
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Table 2: The value of the upper bound of error 𝜖

Networks

𝑇

1 2 4 8 16

WikiV 0.24 0.13 0.07 0.04 0.03

Gowalla 0.43 0.26 0.18 0.14 0.12

DBLP 0.44 0.31 0.25 0.22 0.20

Youtube 0.56 0.32 0.20 0.15 0.12

Skitter 0.18 0.11 0.07 0.05 0.04

ComLiveJ 0.16 0.11 0.09 0.08 0.08

comparable trends across the remaining datasets. As depicted, FDP
achieves over 96% approximation of the optimal solution by the

first iteration. This rapid convergence is credited to the efficient

initial weight distribution, where during the first iteration, weights

are allocated to 𝑆∗ (lines 4-6 of Algorithm 1), and nodes outside

𝑆∗ typically receive lower weights. Hence, FDP can approach an

near-optimal approximation within a small number of iterations.

Exp-4: Running Time Analysis for Different |𝑅 | Sizes. The
impact of varying the seed set size (|𝑅 |) on the running time is

illustrated in Figure 6. We use datasets Pokec and Orkut as exam-

ples, with similar patterns observed across other datasets. Each data

point in Figure 6 correlates to a unique (𝐴, 𝑅) pair. As expected, an
increase in |𝑅 | leads to a corresponding rise in running time for all

algorithms. Notably, FDP consistently exhibits the fastest running

time. Moreover, the running time of FDP remains remarkably stable

across different |𝑅 | sizes. For instance, on the Pokec network with

|𝑅 | ranging between 290 and 310, the running time of FDP fluctu-

ates narrowly between 6𝑚𝑠 and 9𝑚𝑠 . This stability can be attributed

to the time complexity of FDP being primarily dependent on the

local edges surrounding 𝑅. While FDPE operates at a slower pace

compared to FDP, it still outperforms LA and FS in 96% of the cases

on Pokec and 95% on Orkut, demonstrating its relative scalability

and efficiency. Hence, these results give preliminary evidence that

both FDP and FDPE scale well when varying seed set sizes.

Exp-5: Community Quality Analysis for Different |𝑅 | Sizes.
The influence of seed set size (|𝑅 |) on community quality is depicted

in Figure 7 for Pokec andOrkut networks, with consistent behavior
noted across other datasets. In the figure, each point corresponds to

an execution instance with a specific pair of𝐴 and 𝑅. The results re-

veals that communities identified by FDP and FDPE exhibit greater

density than those found by LA and FS in over 99% of the cases

evaluated. This finding demonstrates that both FDP and FDPE can

consistently uncover denser communities than other baselines.

Exp-6: Evaluating the Error Bound 𝜖. FDP provides an 𝜖 value,

serving as the error upper bound (line 14 of Algorithm 1). Due to

space limits, we detail the 𝜖 outcomes for 6 networks in Table 2.

Remarkably, even with a single iteration (𝑇 = 1), 𝜖 remains below 1,

suggesting that FDP achieves at least 2-approximation. As excepted,

𝜖 diminishes with increasing𝑇 . For instance, on theWikiV network

with 𝑇 = 16, 𝜖 reaches as low as 0.03, indicating an upper bound of

approximation ratio of

𝜌+
𝑅
(𝑆∗ )

𝜌+
𝑅
(𝑆∗ ) ≤ 1.03. The empirical results confirm

that 𝜖 is a reliable indicator of the accuracy of FDP in practice.

Exp-7: Case Studies. To further show the effectiveness of our FDP,
we compare the performance of LA and FDP on the well-known

and widely-used Zachary karate club network [1]. The details of

the datasets are in Appendix E. LA identifies a community compris-

ing only 5 members (red in Figure 8(a)) closely connected to the

(a) R-subgraph density by LA (b) NR-subgraph density by FDP

Figure 8: Case studies. Local communities (red nodes) are
computed by LA and FDP on the Zachary karate club network,
where 𝑅 is composed of the green nodes.

seed nodes (depicted in green). These members tend to have lower

degrees, which aligns with the tendency of R-subgraph density

to exclude nodes with higher degrees. In contrast, FDP is capa-

ble of discovering a broader community that includes all 10 mem-

bers in the vicinity of the seed nodes (Figure 8(b)), which aligns

with the known group assignments present in the publicly avail-

able datasets within the PyTorch framework (see source code for

torch_geometric.datasets.karate, community 0). Indeed, it appears

more reasonable to include these 10 members into a community, as

all of them are densely connected to the seeds. The conductance

of the subgraph with the maximum R-subgraph density and NR-

subgraph density is 0.44 and 0.27, demonstrating the superiority of

our NR-subgraph density. This result exemplifies the potential of

FDP for effective local community detection and related applica-

tions.

7 CONCLUSION
This work presents a step forward in detecting local dense commu-

nities within networks. The proposed NR-subgraph density metric

considers both the local connectivity to the seed set and the global

graph density. We formulate the problem of the anchored densest

subgraph search based on NR-subgraph density as a Linear Pro-

gramming problem, which can be converted into its dual to facilitate

the use of convex programming techniques. The proposed FDP and

FDPE algorithms harness the efficiency and convergence properties

of the Frank-Wolfe optimizationmethod. The extensive experiments

conducted on 12 real-world networks have demonstrated the high

performance and utility of our algorithms. Both FDP and FDPE are

not only substantially faster than existing methods but also uncover

subgraphs with exceptional internal quality. These results stand as

a testament to the practicality and effectiveness of our approach

for local community detection.
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Algorithm 3: The Frank-Wolfe method [28]

Input: A convex programming problem with objective function 𝑓 and domain D;

Number of iterations𝑇 .

Output: A feasible solution
ˆ𝛼∗ ∈ D with 𝑓 ( ˆ𝛼∗ ) − 𝑓 (𝛼∗ ) ≤ 𝑂 ( 1

𝑇
)

1 Let 𝛼 (0) ∈ D;

2 for 𝑡 ← 1, 2, ...,𝑇 do
3 Compute 𝛼 := argmin𝛼 ∈D ⟨𝛼,▽𝑓 (𝛼 (𝑡−1) ) ⟩;
4 𝛼 (𝑡 ) := (1 − 𝛾𝑡 ) · 𝛼 (𝑡−1) + 𝛾𝑡 · 𝛼

5 return 𝛼 (𝑇 ) ;

A RELATEDWORK
Seeds based local community search. Given a seed set or ref-

erence set 𝑅, the seeds based local community search problem

(or the seed expansion problem) is to detect a community that is

highly correlated to 𝑅 [6, 13, 29, 45]. There are three categories of

related methods, metric optimization [16, 39, 45, 46], random walk

[3, 8, 26, 29, 44, 49] and cohesive subgraph search (see survey [19]).

Metric optimization based algorithms are designed to identify

communities that score highly on a specific quality metric. These

metrics are broadly classified into two types: conductance and den-

sity. Additional metrics, such as local modularity [24], are not be

suitable for application to large-scale networks due to computa-

tional constraints or scalability issues. As a result, they are not

addressed in this discussion. Conductance-based metrics evaluate

the community by its cut and volume. The "cut" represents the

number of outbound edges and the volume reflects the aggregate

degree of all community members. An example is the local conduc-

tance metric, which assesses community quality by considering the

cut alongside a volume that incorporates local penalties [39, 46].

Density-based metrics, on the other hand, measure the community

by the ratio of the "sum of weights," influenced by the seed set 𝑅, to

the size of the community [16, 48]. The state-of-the-art metric in

seed-based local community search, R-subgraph density [16], exem-

plifies this approach. Similarly, our NR-subgraph density belongs

to the density-based category, offering a nuanced perspective on

community connectedness and relevance to the seeds.

Random walk-based algorithms initiate random walks from the

seed nodes set 𝑅. They can discover multiple communities when

the seeds are not confined to a single community [3, 8]. Despite

this strength, random walk-based methods have faced criticism

for identifying communities with tenuous links to the seed set 𝑅

[16]. Various efforts have been made to refine these algorithms

and enhance the relevance of the detected communities to the

seeds [8, 49]. These improvements aim to balance the exploratory

nature of random walks with the need for communities that are

meaningfully connected to the initial set of interest.

Cohesive subgraph search [19] use the cohesive structures as

the cohesiveness and connectivity metrics of community, such as

𝑘-core [7, 42], 𝑘-truss [2, 27] and 𝑘-clique [14]. However, it has been

noted [16] that communities identified using cohesive subgraph

search often contain a significant number of nodes that are not

relevant to the seed set𝑅. This tendency to include extraneous nodes

limits the effectiveness of these methods for certain applications.

Consequently, cohesive subgraph search has not been selected as

a baseline in our work or in previous studies [16, 46] within the

context of seed-based local community search.

Densest subgraph. The densest subgraph problem and its varia-

tions have been widely studied for over five decades (see survey

[30]). Densest subgraph search is to find a subgraph that maxi-

mize a measure of density. The traditional measure is the edge

density. There are also a lot of variants of the density measure.

Densest at-least(most)-k-subgraph is the densest subgraph with

size at least(most) 𝑘 [5]; Densest 𝑘-subgraph is the densest subgraph

with size 𝑘 [21]; Fair densest subgraph is the densest subgraphs

that has equal colors [4, 36]; Higher-order density is defined as the

ratio of the count of a given motif and the subgraph size [20, 43].

Our NR-subgraph density is a kind of density by weighted edges,

which is based on the seeds set 𝑅.

Existing methods for the densest subgraph and its variants are

mainly in two kinds: binary-search and maximum-flow based al-

gorithms [16, 23] and programming-based algorithms [9, 11, 12,

17, 25, 43]. Binary-search and maximum-flow based algorithms

use binary-search to find a possible density and use maximum-

flow to check whether the possible density is optimal [16, 23].

Programming-based algorithms model the densest subgraph prob-

lem into programming problem and utilize programming solver

(such as Frank-Wolfe method [17, 43]) or peeling-based algorithms

[9, 11, 12] to find the exact or approximate optimal solution.

B THE FRANK-WOLFE METHOD
The Frank-Wolfe method is widely recognized for its application

to constrained primal-dual convergence problems, with its efficacy

underpinned by the provision of duality gap certificates [28]. A

notable advantage of the Frank-Wolfe algorithm is its projection-

free nature that there is no need to verify the feasibility of interim

solutions at each iteration.

The essence of the Frank-Wolfe method is to iteratively approxi-

mate the optimal solution by solving a linear optimization problem

over the feasible domain D, as depicted in line 3 of Algorithm 3.

Each solution 𝛼 obtained from this process is inherently feasible,

thereby obviating the necessity for any additional projection onto

D. The algorithm then updates the current solution by taking a

step in the direction of 𝛼 with a step size 𝛾𝑡 (line 4).

By unifying a collection of greedy approximations, the Frank-

Wolfe algorithm successively narrows the gap to the optimal solu-

tion, as proven in [28]. The details of the Frank-Wolfe framework

are meticulously outlined in Algorithm 3, where each iteration re-

fines the answer, converging towards optimality while avoiding

the computational burden of projection steps.

The convergence rate of the Frank-Wolfe method is determined

by the curvature constant, which is defined based on the Bergman

divergence.

Theorem B.1 (curvature constant [28]). The curvature con-
stant of 𝑓 over D is

𝐶𝑓 = sup

𝛼
1
,𝛼
3
∈D,

𝛾 ∈ [0,1],
𝛼
2
=𝛼

1
+𝛾 (𝛼

3
−𝛼

1
)

2

𝛾2
(𝑓 (𝛼2) − 𝑓 (𝛼1) − ⟨𝛼2 − 𝛼1,∇𝑓 (𝛼1)⟩).

TheoremB.2 (convergence rate [28]). The Frank-Wolfemethod
with step size 𝛾𝑡 = 1

𝑡 , 𝑡 = 1, 2, 3, ... satisfies

𝑓 (𝛼 (𝑡 ) ) − 𝑓 (𝛼∗) ≤
𝐶𝑓

𝑡
.

C STABLE SUBSET [17].
We present the concept of stable subset in Definition C.1.

Definition C.1 (stable subset [17]). A subset 𝑆 is a stable subset

with respect to a feasible solution (𝛼, 𝛽) with 𝑟 = 𝛼 + 𝛽 , if (a) For
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all 𝑢 ∈ 𝑆 and 𝑣 ∉ 𝑆 , 𝑟 (𝑢) > 𝑟 (𝑣); (b) For all 𝑒 that intersects both 𝑆

and 𝑉 \ 𝑆 , 𝛼𝑒𝑢 = 0,∀𝑢 ∈ 𝑒 ∩ 𝑆 .

As shown in Definition C.1, a subset 𝑆 is stable when the nodes

in 𝑆 have the largest ranking in 𝑟 and receive weights only from

𝐸 (𝑆). And the remaining nodes𝑉 \ 𝑆 receive weights from 𝐸 \𝐸 (𝑆).
By theorem 5.3, we know that the maximum rank is an upper bound

of NR-subgraph density. Similarly, we can derive that the minimum

rank is an lower bound. Since the minimum rank of 𝑆 is larger than

the maximum rank of 𝑉 \ 𝑆 , we can derive that 𝑆∗ ⊆ 𝑆 .

Theorem C.2. When ˆ𝑆∗ is a stable subset, 𝑆∗ ⊆ ˆ𝑆∗.

In implementing FDPE, we handle the vector 𝛼 where each 𝛼𝑒𝑢
represents theweight node𝑢 receives from edge 𝑒 . For the edges that

intersect
ˆ𝑆∗ and𝑉 \ ˆ𝑆∗, our approach assigns their weights entirely to

𝑉 \ ˆ𝑆∗ to refresh 𝛼 . This reassignment yields an updated rank vector

𝑟 ′, derived from the refreshed 𝛼 values. Should
ˆ𝑆∗ prove a stable

subset relative to 𝑟 ′, it implies that the true optimal subgraph 𝑆∗ is
contained within

ˆ𝑆∗. The stability check, denoted isStableSubset in
line 4 of Algorithm 2, therefore runs in time proportional to𝑂 ( |𝐸′ |),
with 𝐸′ specified in line 1 of Algorithm 2. This ensures the time

complexity of verifying stability is tied directly to the size of the

edge set 𝐸′.

D MISSING PROOFS
The proof of Theorem 3.3.

Proof. To prove the lemma, we need to prove that 2|𝐸 (𝑆) | ≥
2|𝐸 (𝑆) | − ∑

𝑢∈𝑆\𝑅 |𝑁 (𝑢,𝑉 ) | ≥ 2|𝐸 (𝑆) | − ∑
𝑢∈𝑆\𝑅 |𝑁 (𝑢, 𝑆) |. Since

𝑆 ⊆ 𝑉 , we have |𝑁 (𝑢, 𝑆) | ≤ |𝑁 (𝑢,𝑉 ) |. Thus, we can complete the

proof. □

The proof of Lemma 4.1.

Proof. From the definition of 𝜌+
𝑅
(𝑆), we have

𝜌+𝑅 (𝑆 ) · |𝑆 | = 2 |𝐸 (𝑆 ) | −
∑︁

𝑢∈𝑆\𝑅
|𝑁 (𝑢, 𝑆 ) |

=
∑︁
𝑢∈𝑆
|𝑁 (𝑢, 𝑆 ) | −

∑︁
𝑢∈𝑆\𝑅

|𝑁 (𝑢, 𝑆 ) |

=
∑︁

𝑢∈𝑆∩𝑅
|𝑁 (𝑢, 𝑆 ) | =

∑︁
𝑒∈𝐸 (𝑆 )

𝑤𝑒

(7)

□

The proof of Lemma 4.3.

Proof. We construct a vector𝑦 that𝑦𝑢 = 1

|𝑆 | if𝑢 ∈ 𝑆 and𝑦𝑢 = 0

if 𝑢 ∉ 𝑆 . It is easy to derive that 𝑦 is a feasible solution of LP. Then
we have 𝑥𝑒 = 1

|𝑆 | for 𝑒 ∈ 𝐸 (𝑆) and 𝑥𝑒 = 0 for 𝑒 ∉ 𝐸 (𝑆). Thus,

the objective function has a value of

∑
𝑒∈𝐸 (𝑆 ) 𝑤𝑒

|𝑆 | . Combined with

Lemma 4.1, we can complete the proof. □

The proof of Lemma 4.4.

Proof. Suppose 𝜌+
𝑅
(𝑆) < 𝑣𝑦 for all subgraph 𝑆 ⊆ 𝑉 , and we

have

∑
𝑒∈𝐸 (𝑆 ) 𝑤𝑒 < 𝑣𝑦 |𝑆 | according to Lemma 4.1, for all subgraph

𝑆 ⊆ 𝑉 .

𝑣𝑦 =
∑︁
𝑒∈𝐸

𝑤𝑒 · 𝑥𝑒 < 𝑣𝑦

∫
1

0

∑︁
𝑒 :𝑥𝑒=𝑧

𝑧 · |𝑆 (𝑧) |𝑑𝑧 ≤ 𝑣𝑦,

which is a contradiction. The last inequality comes from 𝐶2 of LP,
which restricts |𝑆 (𝑧) | ≤ ⌊ 1𝑧 ⌋ for all 𝑧 ∈ (0, 1]. Let 𝑧

+
be continues

value larger than 𝑧. 𝑆 (𝑧) is defined as the set of nodes with 𝑧 =

𝑦𝑢 < 𝑧+. □

The proof of Theorem 4.5.

Proof. Let 𝑣∗ be the objection function value of𝑦∗. By Lemma 4.3,

we have 𝜌+
𝑅
(𝑆∗ADSS+) ≤ 𝑣∗. Furthermore, according to Lemma 4.4,

we have 𝜌+
𝑅
(𝑆∗ADSS+) ≥ 𝑣∗. As a result, 𝑣∗ = 𝜌+

𝑅
(𝑆∗ADSS+). □

The proof of Theorem 5.1.

Proof. The condition 𝐶0 defines𝑤𝑒 , which are constants. The

condition 𝐶1 can be rewrite into 2|𝐸 | inequations 𝑤𝑒 ≤ 𝑦𝑢 ,∀𝑢 ∈
𝑒 ∈ 𝐸. For each inequation, we introduce a variable 𝛼𝑒𝑢 ≥ 0 that

𝛼𝑒𝑢 · 𝑥𝑒 ≤ 𝛼𝑒𝑢 · 𝑦𝑢 ,∀𝑢 ∈ 𝑒 ∈ 𝐸. Similarly, we introduce 𝑛 variables

𝛽 according to 𝐶3 of LP, and we get 0 < 𝛽𝑢𝑦𝑢 ,∀𝑢 ∈ 𝐴 and 0 =

𝛽𝑢𝑦𝑢 ,∀𝑢 ∉ 𝐴. Sum them together and we get∑︁
𝑒∈𝐸

(∑︁
𝑢∈𝑒

𝛼𝑒𝑢

)
𝑥𝑒 ≤

∑︁
𝑢∈𝑉

(
𝛽𝑢 +

∑︁
𝑒 :𝑢∈𝑒

𝛼𝑒𝑢

)
𝑦𝑢 .

Introducing conditions 𝐷0 and 𝐷2, the ineuqation becomes∑︁
𝑒∈𝐸

𝑤𝑒𝑥𝑒 ≤
∑︁
𝑢∈𝑉
(𝑟𝑢 + 𝛽𝑢 )𝑦𝑢 .

The left part of the inequation is the objective function of LP.
We need to find the minimum value of the right part and make the

minimum value be as large as possible due to the duality.

According to 𝐶2 of LP, we have ∥𝑦∥ ≤ 1. As a consequence, we

get the objective function of DP∑︁
𝑢∈𝑉
(𝑟𝑢 + 𝛽𝑢 )𝑦𝑢 = ⟨𝑟 + 𝛽,𝑦⟩ ≤ ∥𝑟 + 𝛽 ∥ · ∥𝑦∥ ≤ ∥𝑟 + 𝛽 ∥ .

According to𝐶3 of LP, the nodes in 𝐴 has the minimum positive

value of 𝑦. Then, we can deduce 𝐷4 because the right part is the

form of summary of product of 𝑟 + 𝛽 and 𝑦. □

The proof of Theorem 5.3.

Proof. Let 𝑟𝑚𝑎𝑥 = max𝑢∈𝑉 𝑟𝑢 and 𝑥𝑚𝑎𝑥 = max𝑢∈𝑉 (𝑟𝑢 + 𝛽𝑢 ).
We prove that 𝑟𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥 . For the nodes 𝑢 ∉ 𝐴 with 𝑟𝑢 = 𝑟𝑚𝑎𝑥 ,

we have 𝛽𝑢 = 0 because only the nodes in 𝐴 may have a positive 𝛽 ,

and we can derive that 𝑟𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥 . When ∀𝑢 ∉ 𝐴, 𝑟𝑢 < 𝑟𝑚𝑎𝑥 , we

can infer that 𝛽𝑢 = 0 for the node in 𝐴 with 𝑟𝑢 = 𝑟𝑚𝑎𝑥 . So we have

𝑟𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥 .

At last, we can prove the theorem by linear programming duality

𝑟𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥 ≥ ∥𝑟∗ + 𝛽∗∥ ≥ 𝜌+𝑅 (𝑆
∗)

. □

The proof of Theorem 5.4.

Proof. Let (𝛼∗, 𝛽∗) be the optimal solution of DP. Let 𝑟∗ be the
vector computed by 𝛼∗. We prove that the nodes in 𝑆∗ have the
largest entry in 𝑟∗ + 𝛽∗. By Lemma 4.1, we know that the total

weight in 𝑆∗ is
∑
𝑒∈𝐸 (𝑆∗ ) 𝑤𝑒 . According to 𝐷0 and 𝐷2, we have∑

𝑢∈𝑆∗ 𝑟
∗ (𝑢) + 𝛽∗ (𝑢) ≥ ∑

𝑒∈𝐸 (𝑆∗ ) 𝑤𝑒 . Since the objective function

is to minimize ∥𝑟∗ + 𝛽∗∥, we infer that the nodes in 𝑆∗ has the same

value of 𝑟∗ + 𝛽∗. Otherwise, we can re-assign the weight to reach a

more even distribution of 𝑟∗+𝛽∗ and a smaller value of the objective

function. Thus, the nodes in 𝑆∗ are the maximum in 𝑟∗ + 𝛽∗ and the
nodes in 𝑉 \ 𝑆∗ have smaller value in 𝑟∗ + 𝛽∗. At last, we can find

𝑆∗ from 𝑟∗ + 𝛽∗ by extracting the entries with the largest value. □

The proof of Lemma 5.6.
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Proof. Let 𝑟 be the vector computed by Algorithm 1. We prove

that max𝑢∈𝑆∗
𝑟 (𝑢 )
𝑇
≥ 𝜌+

𝑅
(𝑆∗). According to Lemma 4.1, we know

that the total weight in 𝑆∗ is
∑
𝑒∈𝐸 (𝑆∗ ) 𝑤𝑒 . In Algorithm 1, the

weight in 𝐸 (𝑆∗) can only be assigned to the nodes in 𝑆∗. Thus, we
have

𝜌+𝑅 (𝑆
∗) =

∑
𝑒∈𝐸 (𝑆∗ ) 𝑤𝑒

|𝑆∗ | ≤
∑
𝑢∈𝑆∗ 𝑟 (𝑢)
𝑇 |𝑆∗ | ≤ max

𝑢∈𝑆∗
𝑟 (𝑢)
𝑇

.

At last, we can prove that

𝜌+
𝑅
(𝑆∗)

𝜌+
𝑅
( ˆ𝑆∗)

≤ max𝑢∈𝑆∗ 𝑟 (𝑢)/𝑇
𝜌+
𝑅
( ˆ𝑆∗)

≤ max𝑢∈𝑉 𝑟 (𝑢)/𝑇
𝜌+
𝑅
( ˆ𝑆∗)

= 1 + 𝜖

. □

The proof of Lemma 5.7.

Proof. Let 𝑟 (𝑡 ) and 𝛽 (𝑡 ) be the vector in the 𝑡𝑡ℎ iteration of

Algorithm 1 (line 3). Let 𝑥 (𝑡 ) = 𝑟 (𝑡 ) + 𝛽 (𝑡 ) . Let 𝑠 (𝑡 ) = 𝑥 (𝑡 ) −𝑥 (𝑡−1) ,
i.e. the updated value during the 𝑡𝑡ℎ iteration. We have that

𝑥 (𝑡 )

𝑡
=
𝑥 (𝑡−1) + 𝑠 (𝑡 )

𝑡
= (1 − 1

𝑡
) 𝑥
(𝑡−1)

𝑡 − 1 +
1

𝑡
𝑠 (𝑡−1) .

In the 𝑡𝑡ℎ iteration of Algorithm 1 (lines 4-9), 𝑟/𝑡 and 𝛽/𝑡 is a feasible
solution of DP with 𝛾𝑡 =

1

𝑡 .

Let (𝛼, 𝛽) be a feasible solution of DP. Let 𝑟 be the vector com-

puted by 𝛼 by 𝐷0 of DP. The objective function of DP can be seen

as 𝑓 (𝛼, 𝛽) = ∑
𝑢∈𝑉 (𝑟𝑢 + 𝛽𝑢 )2. Further, the derivation is

▽𝑓 (𝛼, 𝛽) = 2

∑︁
𝑢∈𝑉
(𝑟𝑢 + 𝛽𝑢 ).

According to line 3 of Algorithm 3, we need to compute the sub-

problem

arg min

(𝛼,𝛽 ) ∈D
⟨𝑟 + 𝛽,▽𝑓 (𝛼

(𝑡−1)

𝑡 − 1 ,
𝛽 (𝑡−1)

𝑡 − 1 )⟩.

This is exactly what FDP do in lines 4-9 of Algorithm 1. FDP solves

this subproblem by the basic 𝐵&𝐵method. It divides the subproblem

into problems of making the distribution be as even as possible on

the edges.

At last, we can conclude that lines 1-9 of Algorithm 1 is an

implementation of the Frank-Wolfe method. □

The proof of Lemma 5.10.

Proof. Since𝑤𝑒 ≤ 2, we have

∑
𝑒 𝑤𝑒

2 ≤ 4𝑚′. □

The proof of Theorem 5.12.

Proof. Let 𝑆 and 𝑇 be a cut of the flow network that 𝑠 ∈ 𝑆 and

𝑡 ∈ 𝑇 . Let 𝑆 ′ = 𝑆 \ {𝑠} and 𝑇 ′ = 𝑇 \ {𝑡}. We have
ˆ𝑆∗ = 𝑆 ′ ∪ 𝑇 ′.

The cut is composed of three types of edge from 𝑆 to 𝑇 . The first

type of edge is from 𝑠 to 𝑇 ′. The summary of the first type of edge

is

∑
𝑢∈𝑇 ′ |𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) |. The second type of edge links from 𝑆 ′ to

𝑇 ′, with summary of capacity

∑
𝑒 (𝑢,𝑣) :𝑢∈𝑆 ′,𝑣∈𝑇 ′ 𝑤𝑒 . The third type

edges links from 𝑆 ′ to 𝑡 , with summary of capacity |𝑆 ′ |𝜌+
𝑅
( ˆ𝑆∗). At

last, we can derive that

𝑓 ( ˆ𝑆∗) =
∑︁
𝑢∈𝑇 ′

|𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) | +
∑︁

𝑒 (𝑢,𝑣) :𝑢∈𝑆 ′,𝑣∈𝑇 ′
𝑤𝑒 + |𝑆 ′ |𝜌+𝑅 ( ˆ𝑆∗) .

Then, we have

𝑓 ( ˆ𝑆∗ ) −
∑︁

𝑢∈ ˆ𝑆∗
|𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) |

= −
∑︁
𝑢∈𝑆′

|𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) | +
∑︁

𝑒 (𝑢,𝑣) :𝑢∈𝑆′,𝑣∈𝑇 ′
𝑤𝑒 + |𝑆′ |𝜌+𝑅 ( ˆ𝑆∗ )

=
∑︁
𝑢∈𝑆′

(
|𝑁 (𝑢,𝑇 ′ ∩ 𝑅) | − |𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) |

)
+ |𝑆′ |𝜌+𝑅 ( ˆ𝑆∗ )

= −
∑︁
𝑢∈𝑆′

|𝑁 (𝑢, 𝑆′ ∩ 𝑅) | + |𝑆′ |𝜌+𝑅 ( ˆ𝑆∗ )

= −(2 |𝐸 (𝑆′ ) | −
∑︁

𝑢∈𝑆′\𝑅
|𝑁 (𝑢, 𝑆′ ) | ) + |𝑆′ |𝜌+𝑅 ( ˆ𝑆∗ )

(8)

When 𝑓 ( ˆ𝑆∗) −∑
𝑢∈𝑆∗ |𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) | < 0, we can state that there is

a 𝑆 ′ denser than ˆ𝑆∗ because 𝜌+
𝑅
(𝑆 ′) = 2 |𝐸 (𝑆 ′ ) |−∑𝑢∈𝑆′\𝑅 |𝑁 (𝑢,𝑆 ′ ) |

|𝑆 ′ | >

𝜌+
𝑅
( ˆ𝑆∗). When 𝑓 ( ˆ𝑆∗) =

∑
𝑢∈𝑆∗ |𝑁 (𝑢, ˆ𝑆∗ ∩ 𝑅) |, we have 𝑆 ′ = ˆ𝑆∗.

Thus, we can complete the proof. □

E DETAILS OF CASE STUDY
The network is made up of a university karate club, where each

node represents a member of the club, and each edge represents

a tie between two members of the club. The network represents a

conflict that arose within a karate club at a US university, which

eventually led to the club splitting into two factions. The dataset is

often used to test community detection algorithms, which aim to

identify groups within the network that are more densely connected

with each other than with the rest of the network. The initial club

was led by the individual labeled "Mr. Hi", but a disagreement led

to the formation of a rival faction under the leadership of a student

named "John A". The case study focuses on the subgroup led by

"John A". "John A" and one of his group members serve as the seeds

to identify individuals affiliated with them.

F SUPPLEMENTAL EXPERIMENTS
On the image network FLICKER (𝑛 = 105938,𝑚 = 2316948), LA/FDP/
FDPE takes 125.48/3.67/10.54 ms respectively, and reports sub-

graphs with average density 4.95/52.28/50.88 and average conduc-

tance of 0.98/0.85/0.85 respectively.

On the hyperlink networkNotre-Dame (𝑛 = 325729,𝑚 = 1117563),

LA/FDP/FDPE takes 5.83/0.46/1.69 ms respectively, and reports sub-

graphswith average density 3.51/8.22/8.22 and average conductance

of 0.88/0.88/ 0.88 respectively.

On the road network USAROAD (𝑛 = 23947347,𝑚 = 28854312),

LA/FDP/FDPE takes 16.81/14.38/ 24.73 ms respectively, and reports

subgraphs with average density 0.34/1.07/1.07 and average conduc-

tance of 0.75/0.20/0.20 respectively.
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